
M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

1

4.1 Why normalization (Insertion, Updating,
Deletion anomalies)

 Normalization is a database design technique which organizes tables in a manner
that reduces redundancy and dependency of data.

 It divides larger tables to smaller tables and links them using relationships.

 It is a multi-step process that puts data into tabular form, removing duplicated
data from the relation tables.

 Normalization is used for mainly two purposes,

1. Eliminating redundant(useless) data.

2. Ensuring data dependencies make sense i.e data is logically stored.

Problems Without Normalization
 If a table is not properly normalized and have data redundancy then it will not

only eat up extra memory space but will also make it difficult to handle and
update the database, without facing data loss.

 Insertion, Updation and Deletion Anomalies are very frequent if database is not
normalized.

 To understand these anomalies let us take an example of a Student table.

Rollno name branch hod office_tel

401 Akon CSE Mr. X 53337

402 Bkon CSE Mr. X 53337

403 Ckon CIVIL Mr. Y 53338

404 Dkon ELEC Mr. Z 53339

 In the table above, we have data of 2 Computer Sci. students. As we can see, data
for the fields branch, hod(Head of Department) and office_tel is repeated for the
students who are in the same branch in the college, this is Data Redundancy.

Insertion Anomaly
 Suppose for a new admission, until and unless a student opts for a branch, data of

the student cannot be inserted, or else we will have to set the branch information
as NULL.

 Also, if we have to insert data of 100 students of same branch, then the branch
information will be repeated for all those 100 students.

 These scenarios are nothing but Insertion anomalies.

Updation Anomaly
 What if Mr. X leaves the college? or is no longer the HOD of computer science

department? In that case all the student records will have to be updated, and if by

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

2

mistake we miss any record, it will lead to data inconsistency. This is Updation
anomaly.

Deletion Anomaly
 In our Student table, two different information are kept together, Student

information and Branch information. Hence, at the end of the academic year, if
student records are deleted, we will also lose the branch information. This is
Deletion anomaly.

TYPES OF FUNCTIONAL DEPENDENCY:
The different types of functional dependency are described below:

1. FULL FUNCTIONAL DEPENDENCY:

Given a relation schema R and an FD X->Y, Y is fully functionally dependent on X if there is no Z,

where Z is a proper subset of X such that Z->Y.

The dependency X->Y is left reduced, there is being no extraneous attribute in LHS of

FD.

Example:

Let us consider a relation schema R (A, B, C, D, E, H), with the FD set

 F= {A->BC, AH->D, E->C}

The dependency A->BC is left reduced and BC is fully functionally dependent on A.

2. PARTIAL FUNCTIONAL DEPENDENCY:

Given a relation schema R with the functional dependency set F, defined on the

attributes of R and K as a candidate key, if X is a proper subset of K and if we have

functional dependency

X->Y in F, then Y is said to be partially dependent on K.

Example:

In the relation schema R (A, B, C, D) with FDs

 F= {AB->C,B->D}

the key of this relation is AB and D is partially dependent on the key.

3. TRANSITIVE FUNCTIONAL DEPENDENCY:

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

3

A functional dependency X->Y is a transitive dependency in a relation schema R, if for

the attributes Z of R; we have X->Z then Z->Y. Here Y is transitively dependent on X.

4. TRIVIAL FUNCTIONAL DEPENDENCY:

Functional dependency is said to be trivial if right hand side is a subset of left hand side,

they are satisfied by all relations.

Example: A->A, AB->A.

5. NONTRIVIAL FUNCTIONAL DEPENDENCY:

Functional dependency is said to be non- trivial if right hand side is not a subset of

left hand side, they are not trivial.

Example: A->B, AB->D.

4.2.1 Normalization Rules:
 Database Normalization is a technique of organizing the data in the database.

 Normalization is a systematic approach of decomposing tables to eliminate data
redundancy(repetition) and undesirable characteristics like Insertion, Update and
Deletion Anomalies.

 It is a multi-step process that puts data into tabular form, removing duplicated data
from the relation tables.

 It divides larger tables to smaller tables and links them using relationships.

 Normalization is used for mainly two purposes,

1. Eliminating redundant(useless) data.

2. Ensuring data dependencies make sense i.e data is logically stored.

 A properly normalized database should have the following characteristics

 Scalar values in each fields

 Absence of redundancy.

 Minimal use of null values.

 Minimal loss of information

 Reduction in anomalies.

 Reduced inconsistency

Normalization rules are divided into the following normal forms:

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

4

1. First Normal Form

2. Second Normal Form
3. Third Normal Form

4. BCNF

5. Fourth Normal Form

6. Domain Key Normal
Form (DKNF)

Most databases should be 3NF or BCNF in order to avoid the database anomalies.

1. First Normal Form (1NF)

For a table to be in the First Normal Form, it should follow the following 4 rules:

1. It should only have atomic(single) valued attributes/columns.

2. Values stored in a column should be of the same domain

3. All the columns in a table should have unique names.
4. And the order in which data is stored, does not matter.

Rules for First Normal Form

Rule 1: Atomic Valued Attributes

 Each column of your table should be single valued which means they should not
contain multiple values.

Rule 2: Attribute Domain should not change

 This is more of a "Common Sense" rule. In each column the values stored must be
of the same kind or type.

 For example: If you have a column "dateofbirth" to save date of births of a set of
people, then you cannot save 'names' of some of them in that column along with
'date of birth' of others in that column.

 It should hold only 'date of birth' for all the records/rows.

Rule 3: Unique name for Attributes/Columns

 This rule expects that each column in a table should have a unique name.

 This is to avoid confusion at the time of retrieving data or performing any other
operation on the stored data.

 If one or more columns have same name, then the DBMS system will be left
confused.

Rule 4: Order doesn't matters

This rule says that the order in which you store the data in your table doesn't matter.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

5

Example

Roll_no Name Subject

101 Akon OS, CN

103 Ckon Java

102 Bkon C, C++

 Our table already satisfies 3 rules out of the 4 rules, as all our column names
are unique, we have stored data in the order we wanted to and we have not
inter-mixed different type of data in columns.

 But out of the 3 different students in our table , 2 have opted for more than 1
subject. And we have stored the subject names in a single column. But as per the
1st Normal form each column must contain atomic value.

How to solve this Problem?

 It's very simple, because all we have to do is break the values into atomic values.

 Here is our updated table and it now satisfies the First Normal Form.

Roll_no Name Subject

101 Akon OS

101 Akon CN

103 Ckon Java

102 Bkon C

102 Bkon C++

 By doing so, although a few values are getting repeated but values for
the subject column are now atomic for each record/row.

 Using the First Normal Form, data redundancy increases, as there will be many
columns with same data in multiple rows but each row as a whole will be unique.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

6

2. Second Normal Form (2NF)
For a table to be in the Second Normal Form,

 It should be in the First Normal form.
 If all nonprime attributes are fully functionally dependent on the primary key.

 What is Dependency?

 Let's take an example of a Student table with columns
student_id, name, reg_no(registration number), branch and address(student's
home address).

student_id Name reg_no branch Address

 In this table, student_id is the primary key and will be unique for every row,
hence we can use student_id to fetch any row of data from this table

 Even for a case, where student names are same, if we know the student_id we
can easily fetch the correct record.

student_id Name reg_no branch Address

10 Akon 07-WY CSE Kerala

11 Akon 08-WY IT Gujarat

 Hence we can say a Primary Key for a table is the column or a group of
columns(composite key) which can uniquely identify each record in the table.

 For Example:I can ask from branch name of student with student_id 10, and I
can get it. Similarly, if I ask for name of student with student_id 10 or 11, I will
get it. So all I need is student_id and every other column depends on it, or can be
fetched using it.

 This is Dependency and we also call it Functional Dependency.

 What is Partial Dependency?

 For a simple table like Student, a single column like student_id can uniquely
identify all the records in a table.

 But this is not true all the time. So now let's extend our example to see if more
than 1 column together can act as a primary key.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

7

 Let's create another table for Subject, which will have subject_id
and subject_name fields and subject_id will be the primary key.

subject_id subject_name

1 Java

2 C++

3 Php

 Now we have a Student table with student information and another
table Subject for storing subject information.

 Let's create another table Score, to store the marks obtained by students in the
respective subjects. We will also be saving name of the teacher who teaches
that subject along with marks.

score_id student_id subject_id marks Teacher

1 10 1 70 Java

Teacher

2 10 2 75 C++

Teacher

3 11 1 80 Java

Teacher

 In the score table we are saving the student_id to know which student's marks
are these and subject_id to know for which subject the marks are for.

 Together, student_id + subject_id forms a Candidate Key, for this table, which
can be the Primary key.

 Confused, How this combination can be a primary key?

 See, if I ask you to get me marks of student with student_id 10, can you get it
from this table? No, because you don't know for which subject. And if I give
you subject_id, you would not know for which student. Hence we need student_id
+ subject_id to uniquely identify any row.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

8

 But where is Partial Dependency?

 Now if you look at the Score table, we have a column names teacher which is
only dependent on the subject, for Java it's Java Teacher and for C++ it's C++
Teacher & so on.

 Now as we just discussed that the primary key for this table is a composition of
two columns which is student_id & subject_id but the teacher's name only
depends on subject, hence the subject_id, and has nothing to do with student_id.

 This is Partial Dependency, where an attribute in a table depends on only a part
of the primary key and not on the whole key.

 How to remove Partial Dependency?

 Steps to convert a relation from 1 normal form to 2 normal forms are as
follows:

1. Identify the set of attributes that make Primary Key.
2. Create all subsets of the above set obtained from step 1.
3. Take each subset as primary key and find attributes that dependent on it.

 For example:

 There can be many different solutions for this, but our objective is to remove
teacher's name from Score table.

 The simplest solution is to remove columns teacher from Score table and add it
to the Subject table. Hence, the Subject table will become:

subject_id subject_name Teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

 And our Score table is now in the second normal form, with no partial
dependency.

score_id student_id subject_id Marks

1 10 1 70

2 10 2 75

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

9

3 11 1 80

And now, this relation satisfy Second Normal Form(2NF).

3. Third Normal Form (3NF)

 For a table to be in the third normal form,

1. It should be in the Second Normal form.
2. And it should not have Transitive Dependency.

Or

Every non-key attribute is non-transitively dependent on the primary key.

 Example:

 Student Table

student_id name reg_no Branch Address

10 Akon 07-WY CSE Kerala

11 Akon 08-WY IT Gujarat

12 Bkon 09-WY IT Rajasthan

 Subject Table

subject_id subject_name Teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

 Score Table

score_id student_id subject_id Marks

1 10 1 70

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

10

2 10 2 75

3 11 1 80

 In the Score table, we need to store some more information, which is the exam
name and total marks, so let's add 2 more columns to the Score table.

score_id student_id subject_id marks exam_name total_marks

 What is Transitive Dependency?

 With exam_name and total_marks added to our Score table, it saves more data
now.

 Primary key for our Score table is a composite key, which means it's made up of
two attributes or columns → student_id + subject_id.

 Our new column exam_name depends on both student and subject.

 For example, a mechanical engineering student will have Workshop exam
but a computer science student won't. And for some subjects you have Prctical
exams and for some you don't.

 So we can say that exam_name is dependent on both student_id and subject_id.

 Well, the column total_marks depends on exam_name as with exam type the total
score changes.

 For example, practicals are of less marks while theory exams are of more
marks.

 But, exam_name is just another column in the score table. It is not a primary key
or even a part of the primary key, and total_marks depends on it.

 student_i + subject_id.---->exam_name ----> total_marks

 This is Transitive Dependency.

 When a non-prime attribute depends on other non-prime attributes rather than
depending upon the prime attributes or primary key.

 How to remove Transitive Dependency?

 Determine the non-prime attribute that determine some other non-prime
attribute.

 Make separate relation, taking first one as primary key.

 Take out the columns exam_name and total_marks from Score table and put
them in an Exam table and use the exam_id wherever required.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

11

Score Table: In 3rd Normal Form

score_id student_id subject_id Marks exam_id

The new Exam table

exam_id exam_name total_marks

1 Workshop 200

2 Mains 70

3 Practicals 30

And now, this relation satisfy Third Normal Form(3NF).

 Advantage of removing Transitive Dependency

 Amount of data duplication is reduced.
 Data integrity achieved.

4. Boyce-Codd Normal Form (BCNF)

 Boyce-Codd Normal Form or BCNF is an extension to the third normal form, and

is also known as 3.5 Normal Form.

 Rules for BCNF

 For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the following
two conditions:

1. It should be in the Third Normal Form.
2. And, for any dependency A → B, A should be a super key.

 In simple words, it means, that for a dependency A → B, A cannot be a non-
prime attribute, if B is a prime attribute.

 Example

 Below we have a college enrolment table with columns
student_id, subject and professor.

https://www.studytonight.com/dbms/third-normal-form.php

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

12

student_id Subject professor

101 Java P.Java

101 C++ P.Cpp

102 Java P.Java2

103 C# P.Chash

104 Java P.Java

 As you can see, we have also added some sample data to the table.

 In the table above:

 One student can enroll for multiple subjects.

 For example, student with student_id 101, has opted for subjects - Java & C++

 For each subject, a professor is assigned to the student.
 And, there can be multiple professors teaching one subject like we have for

Java.

 What do you think should be the Primary Key?

 Well, in the table above student_id, subject together form the primary key,
because using student_id and subject, we can find all the columns of the table.

 One more important point to note here is, one professor teaches only one
subject, but one subject may have two different professors.

 Hence, there is a dependency between subject and professor here,
where subject depends on the professor name.

 This table satisfies the 1st Normal form because all the values are atomic,
column names are unique and all the values stored in a particular column are of
same domain.

 This table also satisfies the 2nd Normal Form as there is no Partial
Dependency.

 And, there is no Transitive Dependency, hence the table also satisfies the 3rd
Normal Form.

 But this table is not in Boyce-Codd Normal Form.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

13

 Why this table is not in BCNF?

 In the table above, student_id, subject form primary key, which
means subject column is a prime attribute.

 But, there is one more dependency, professor → subject.

 And while subject is a prime attribute, professor is a non-prime attribute,
which is not allowed by BCNF.

 How to satisfy BCNF?

 To make this relation(table) satisfy BCNF, we will decompose this table into two
tables, student table and professor table.

 Below we have the structure for both the tables.

 Student Table

student_id p_id

101 1

101 2

and so on...

 Professor Table

p_id professor subject

1 P.Java Java

2 P.Cpp C++

and so on...

 And now, this relation satisfy Boyce-Codd Normal Form(BCNF).

 4.2.2 Armstrong Axioms
 Axioms or rules of inference provide a simpler technique for getting functional

dependencies.
 The letters X, Y, Z are used to denote sets of attributes.
 The following three rules are used to find all possible functional depende ncies.

This collection of rules is called Armstrong’s Axiom in honor of the person who
proposed it.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

14

• Reflexive:

 If Y is a set of attribute and Y is a subset-of X, then X Y holds.

• Augmentation:

If X Y holds and Z is a set of attributes, then XZ YZ holds.

• Transitive:

 If X Y holds and Y Z holds, then X Z holds.

 Armstrong’s Axioms are sound, because they do not generate any incorrect functional

dependencies. They are complete because for a given set F of functional dependencies, they

allows us to generate all F+.

 The additional rules to simplify the computation of F+ are:

• Decomposition:

 If X YZ holds, then X Y holds and X Z holds.

• Union:

 If X Y holds and X YZ holds.

• Psuedotransitivity:

 If X Y holds and WY Z holds, then WX Z holds.

 4.3 Concepts of Structure Query Language (SQL)
 SQL is the standard language for dealing with Relational Databases.

 SQL can be used to insert, search, update, and delete database records.
 SQL can do lots of other operations, including optimizing and maintenance of databases.

 SQL stands for Structured Query language, pronounced as "S-Q-L" or sometimes as "See-
Quel"...

 Relational databases like MySQL Database, Oracle, MS SQL Server, Sybase, etc. use ANSI
SQL.

What Can SQL do?
 SQL can execute queries against a database
 SQL can retrieve data from a database

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

15

 SQL can insert records in a database
 SQL can update records in a database
 SQL can delete records from a database
 SQL can create new databases
 SQL can create new tables in a database
 SQL can create stored procedures in a database
 SQL can create views in a database
 SQL can set permissions on tables, procedures, and views

 4.3.1 SQL datatypes : int, float, double, char, varchar,

number,varchar2, Text, date

Data Type Description

NUMBER(P,S) Hold the 38 digits, and P calls precision and S calls Scale.
INTEGER/INT Hold the integer value containing up to 4 Byte. We can define

one integer data type
FLOAT(size,d) A floating point number. The total number of digits is specified

in size. The number of digits after the decimal point is specified
in the d parameter
Hold the floating value up to 4 Byte.

DOUBLE Same as FLOAT typeHold the 4 byte.
CHAR(size) Hold the 255 character and we cannot enter the digits
VARCHAR(size)
/VARCHAR2(size)

Hold the 4000 alphanumeric data.

TEXT(size) Holds a string with a maximum length of 65,535 bytes
DATE It display the Date and Time, Date in format is DD-MM-YY and

Time in format is 24-hour.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

16

1. NUMBER(P,S):

 The NUMBER data type is used to store numbers (fixed or floating point).
 It stored 38 digits of precision. Numbers may be expressed in two ways:

I. With the numbers 0 to 9, the signs + and –and a decimal point.
II. In scientific notation, such as 1.85E3

column_name NUMBER (precision, scale)

 The precision (P) determines the total number of digit. whereas the scale (S),
determines the number of places to the right of the decimal.

 For example

 A NUMBER(8,2); //hold total precision 8 and decimal digits 2.
 B NUMBER(8); //total precision 8 and no decimal digits.
 C NUMBER; // maximum of 38 digits.

 NUMBER(8,2) it says to enter the 6 digits before the decimal point and after the

decimal point we can enter the 2 digits.

2. INTEGER/INT:

 The integer data type is used to store numbers.
 It stored 38 digits of precision

column_name INTEGER;

 The precision (P) determines the total number of digit. whereas the scale (S),
determines the number of places to the right of the decimal.

 For example

 B INTEGER; //total precision 8 and no decimal digits.
 C INT; // maximum of 38 digits.

3. FLOAT:

The FLOAT data type is the subtype of the NUMBER data type.
Its main purpose is to facilitate compatibility with FLOAT data types.

syntax of the FLOAT data type:
FLOAT(p)
You can only specify the precision for the FLOAT data type. You cannot specify the scale
because Oracle Database interprets scale from the data. The maximum precision
of FLOAT is 126.

In FLOAT, the precision is in binary bits, while in NUMBER the precision is in
decimal digits.

https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

17

f1 FLOAT(4);

4. DOUBLE:

A normal-size floating point number. The total number of digits is specified

in size.

DOUBLE PRECISION is equivalent to FLOAT(53)
 The number of digits after the decimal point is specified in the d parameter

Storage size 8 bytes

syntax

DOUBLE(size, d)

DOUBLE PRECISION

example:

price double precision;

5. CHAR(size):

 This data type is used to store character string values. of fixed length.
 The size in brackets determines is fixed at the time of declaring variable.

 The maximum number of characters this data type can hold is 255 characters.

For example

 grade CHAR;
 stud_name char(10);

 here, first declaration grade hold 1 byte. char default value is 1 byte.

 second declaration stud_name = 'Anjali' oracle will allocate 10 byte memory

rather than 6 byte in this case.

6. VARCHAR(size) \ VARCHAR2(size):

 This data type is used to store variable length alphanumeric data.

 It is a more flexible form of the CHAR data type.

 The maximum this data type can hold up to 4000 characters.
 CHAR is much faster than VARCHAR.

For Example :

stud_name varchar(10) :='ANJALI';

it will allocate 6 byte memory because of variable length.

 It is always good to use VARCHAR2 instead of CHAR data type to optimize the
memory usage.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

18

7. DATE:

 This data type is used to represent date and time. The standard format is DD -
MM-YY as in 21-Jun-04. Time standard format is 24-hour format as in 12:00:00.

SQL commands list:

Language Command List

 DDL

 CREATE

 DROP

 ALTER

 RENAME

 TRUNCATE

 DML

 SELECT

 INSERT

 UPDATE

 DELETE

 DCL
 GRANT
 REVOKE

 TCL

 START TRANSACTION

 COMMIT
 ROLLBACK

 4.4 DDL Statements :
 DDL or Data Definition Language actually consists of the SQL commands that can

be used to define the database schema.
 It simply deals with descriptions of the database schema and is used to create

and modify the structure of database objects in the database.
 Examples of DDL commands:

1. CREATE – is used to create the database or its objects (like table, index, function,
views, store procedure and triggers).

2. DROP – is used to delete objects from the database.
3. ALTER-is used to alter the structure of the database.
4. TRUNCATE–is used to remove all records from a table, including all spaces

allocated for the records are removed.
5. COMMENT –is used to add comments to the data dictionary.
6. RENAME –is used to rename an object existing in the database.

1. CREATE TABLE COMMAND:
 The CREATE table command defines each column of the table uniquely.

 Each column has a minimum of three attributes.

I. Name

II. Datatype
III. Size

https://www.geeksforgeeks.org/sql-create/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-alter-add-drop-modify/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-comments/
https://www.geeksforgeeks.org/sql-alter-rename/

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

19

 Each table column definition is a single clause in the create table syntax. Each

table column definition is separated from the other by a comma and
terminated with a semi colon(;).

 Each column must have a datatype.

 The column should either be defined as null or not null and if this value is left

blank, the database assumes “null” as the default.

 Rules for creating table:
I. A name can have maximum up to 30 characters.

II. Alphabets from A-Z, a-z and numbers from 0-9 are allowed.

III. A name should being with an alphabet.

IV. The use of the special character like _ is allowed and also
recommended. ($,# are allowed only in Oracle)

V. SQL reserved words not allowed. For, example: create, select.
 Syntax:

CREATE TABLE table_name(

column1 datatype,

column2 datatype,

column3 datatype,

columnN datatype,

constraint_specification(one or more columns)

);

 Example:

 CREATE TABLE Emp
 (
 Emp_Name VARCHAR2(25),
 Emp_Add VARCHAR2(25)
);

 Output:
Table created.

2. DROP COMMAND (Destroying tables):

 Sometimes tables within a particular database become outdated and need

to be discarded. In such situation using the DROP TABLE statement with
the table name can destroy a specific table.

 Syntax:

 DROP TABLE <Table_Name>;

 Example:

 DROP TABLE BRANCH_MSTR;

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

20

 Output:

 Table dropped.

3. TRUNCATE COMMAND (Truncating tables):
 TRUNCATE TABLE make empties a table completely.

 Logically, this is equivalent to DELETE statement that deletes all rows.

 TRUNCATE TABLE differs from DELETE in the following ways:
I. Truncate operations drop and re-create the table, which is much

faster than deleting rows one by one.
II. Truncate operations are not transaction- self.

III. The numbers of deleted rows are not returned.

 Syntax:

 TRUNCATE TABLE <Table_Name>;
 Example:

 TRUNCATE TABLE BRANCH_MASTER;

 Output:

 Table truncated.

4. RENAME COMMAND (Renaming tables):
 Oracle allows renaming of tables. The rename operation is done

atomically which means that no other thread can access any of the tables

while rename process is running.

 Syntax:

 RENAME <Table_Name> TO <New_Table_Name>;

 Example:

 RENAME BRANCH_MSTR TO BRANCHES;

 Output:

 Table renamed.

5. ALTER TABLE COMMAND (modifying the

structure of table):
 The structure of a table can be modified by using the ALTER TABLE

command.
 ALTER TABLE allows changing the structure an existing table.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

21

 With ALTER TABLE it is possible to add or delete columns, create or

destroy indexes, change the data type of existing columns, or rename
columns or the table itself.

 ALTER TABLE works by making temporary copy of the original table. The

alteration is performed on the copy, then the original table is deleted and

the new one is renamed. While ALTER TABLE is executing, the original

table is still readable by users of Oracle.
 UPDATE and writes to the table are stalled until the new table is ready,

and then are automatically redirected to the new table without any failed

update.

 Restriction on the ALTER TABLE:
 Change the name of the table.

 Change the name of the column.

 Decrease the size of column if table data exists.

I. Adding New Columns:
 Syntax:

 ALTER TABLE <Table_Name>
ADD (<New_Column_Name> <Datatype>(<Size>),

<New_Column_Name> <Datatype>(<Size>)..);

 Example:

 ALTER BRANCH_MSTR
ADD (CITY VARCHAR2(25));

 Output:

 Table altered.

II. Dropping A Column From A Table:

 Syntax:

 ALTER TABLE <Table_Name>
DROP COLUMN <Column_Name> ;

 Example:

 ALTER BRANCH_MSTR

DROP COLUMN CITY;

 Output:

 Table altered.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

22

III. Modifying Existing Columns:

 Syntax:

 ALTER TABLE <Table_Name>
MODIFY (<Column_Name> <Datatype>(<Size>));

 Example:

 ALTER BRANCH_MSTR
MODIFY (CITY VARCHAR2(25));

 Output:
 Table altered.

 4.5 DML and DQL(Data Query Language) Statements :
 4.5.1 Insert, Update, Delete

1. INSERT (Inserting data into table):
 Once a table is created, the most natural thing to do is load this table with

data to be manipulated later.

 When inserting a single row of data into the table, the insert operation:
I. Creates a new row (empty) in the database table.

II. Loads the values passed (by the SQL insert) into the columns

specified.
 Syntax:

 INSERT INTO <table_name> (<column_name1>, <column_name2>)
 VALUES (<expression1>, <expression2>);

 Example:

 INSERT INTO BRANCH_MSTR (BRANCH_NO, NAME)
 VALUES (‘B1’,’Vile Parle);

 Output:

1 row created.

2. UPDATE (updating the contents of a table):
 The UPDATE command is used to change or modify data values in a table.

 All the rows from a table:
 The UPDATE statement updates columns in the existing table’s rows with

new values. The SET clause indicates which column data should be

modified and new values that they should hold.

 The WHERE clause, if given, specifies which rows should be updated.

Otherwise, all table rows are updated.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

23

 Syntax:

 UPDATE <Table_Name>
SET <Column_Name 1> = <Expression 1>,

<Column_Name2> = <Expression 2>;

 Example:

UPDATE ADDR_DTLS

SET City = ‘Bombay’;

 Output:
44 rows updated.

 A select set rows from a table:
 Syntax:

 UPDATE <Table_Name>
 SET <Column_Name > = <Expression 1>, <Column_Name2> =
 <Expression 2>
 WHERE <Condition>;

 Example:

 UPDATE ADDR_DTLS
 SET City = ‘Bombay’
 WHERE NAME = ‘Vile’;

 Output:

 1 row updated.

3. DELETE COMMAND (delete operations):
 The DELETE command deletes rows from the table that satisfies the

condition provided by its where clause, and returns the number of

records deleted.

 If a DELETE statement without a WHERE clause is issued, all rows are

deleted.

 Removal of all Rows:
 Syntax:

DELETE FROM <Table_Name>;

 Example:

DELETE FROM ACCT_DTLS;
 Output:

16 rows deleted.

 Removal of specific Rows:
 Syntax:

DELETE FROM <Table_Name>
WHERE <Condition>;

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

24

Example:

DELETE FROM ACCT_DTLS
WHERE ACCT_NO LIKE ‘SB%’;

 Output:

6 rows deleted.

 Removal of specific row based on the data held by the

other table:
 Sometimes it is desired to delete records in one table based on values in

another table. Since it is not possible to list more than one table in the
FROM clause while performing delete, the EXISTS clause can be used.

 Example:

DELETE FROM ADDR_DTLS

WHERE EXISTS (SELECT FNAME FROM CUST_MSTR
WHERE CUST_MSTR.CUST_NO = ADDR_DTLS.CODE_NO

AND CUST_MSTR.FNAME = ‘Ivan’);

 Output:

1 row deleted.

4.5.2 Viewing data in the tables (SELECT)

 Once data has been inserted into a table, the next most logical operation

would be to view what has been inserted.

1) ALL ROWS AND ALL COLUMNS:
 In order to view global table data the syntax is:

 Syntax:

 SELECT <Column_Name 1> TO <Column_Name N>

FROM Table_Name;

 SELCECT * FROM <Table_Name>;

 Example:

 SELECT EMP_NO, FNAME, MNAME, LNAME FROM

EMP_MSTR;

 SELECT * FROM EMP_MSTR;

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

25

2) FILTERING TABLE DATA:

 While viewing data from a table it is rare that all the data from
the table will be required each time.

 The way of filtering table data are:

1) Selected Columns and All Rows.

2) Selected Rows and Columns.

3) Selected Columns and Selected Rows.
1) Selected Columns and All Rows:

 The retrieval of specific columns form a table can be done.

 Syntax:

 SELECT <Column_Name1>, <Column_Name2> FROM
<Table_Name>;

 Example:

 SELECT FNAME, LNAME FROM EMP_MSTR;

2) Selected Rows and All Columns:
 If information of a particular client is to be retrieved from a table,

its
retrieval must be based on a specific condition.

 Syntax:

 SELECT * FROM<Table_Name> WHERE <Condition>;

 Example:

 SELECT * FROM BRANCH_MASTR WHERE NAME= ‘Vile

Parle’;

3) Selected Columns and Selected Rows:

 To view a specific set of rows and columns from a table the syntax

will be as follows:

 Syntax:

 SELECT <Column_Name1>, <Column_Name2> FROM

<Table_Name> WHERE <Condition>;
 Example:

 SELECT ACCT_NO, BRANCH_NO FROM ACCT_MSTR

WHERETYPE=’SB’;

4) ELIMINATING DUPLICATE ROWS WHEN USING A SELECT

STATEMENT:

 A table could hold duplicate rows. In such a case, to view only unique

rows the distinct clause can be used. The DISTINCT clause allows
removing duplicates from the result set.

 It can only used with select statements.

 Syntax:

 SELECT DISTINCT <Column_Name1>, <Column_Name2> FROM
<Table_Name>;

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

26

 SELECT DISTINCT * FROM <Table_Name>;

 Example:

 SELECT DISTINCT OCCUP FROM CUST_MASTR;

 SELECT DISTINCT * FROM BRANCH_MASTR;

Functional Dependency

 Functional dependency in DBMS, as the name suggests is a relationship between

attributes of a table dependent on each other.

 The functional dependency is a relationship that exists between two attributes. It

typically exists between the primary key and non-key attribute within a table.

 It helps in preventing data redundancy.

 To understand the concept thoroughly, let us consider P is a relation with

attributes A and B. Functional Dependency is represented by -> (arrow sign)

 Then the following will represent the functional dependency between attributes

with an arrow sign −

A -> B

Example

The following is an example that would make it easier to understand functional dependency −

We have a <Department> table with two attributes − DeptId and DeptName.

DeptId = Department ID

DeptName = Department Name

The DeptId is our primary key.

Here, DeptId uniquely identifies the DeptName attribute.

This is because if you want to know the department name, then at first you need to have the DeptId.

DeptId DeptName

001 Finance

002 Marketing

003 HR

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

27

Therefore, the above functional dependency between DeptId and DeptName can be determined
as DeptId is functionally dependent on DeptName −

DeptId -> DeptName

EXAMPLE 2:

Assume we have an employee table with attributes: Emp_Id, Emp_Name,

Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee

table because if we know the Emp_Id, we can tell that employee name associated with

it.

Functional dependency can be written as:

 Emp_Id -> Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

TYPES OF FUNCTIONAL DEPENDENCIES

1. Trivial Functional Dependency

The Trivial dependency is a set of attributes which are called a trivial if the set of attributes
are included in that attribute.

Symbolically: A ->B is trivial functional dependency if B is a subset of A.
The following dependencies are also trivial: A->A & B->B

For example 1: Consider a table with two columns Student_id and Student_Name.

{Student_Id, Student_Name} -> Student_Id is a trivial functional dependency as Student_Id is
a subset of {Student_Id, Student_Name}.

That makes sense because if we know the values of Student_Id and Student_Name then the
value of Student_Id can be uniquely determined.

Also, Student_Id -> Student_Id & Student_Name -> Student_Name are trivial dependencies too.

For example 2:

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

28

Emp_id Emp_name

AS555 Harry

AS811 George

AS999 Kevin

Consider this table of with two columns Emp_id and Emp_name.
{Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as Emp_id is a subset of
{Emp_id,Emp_name}.

2. Non Trivial Functional Dependency

Functional dependency which also known as a nontrivial dependency occurs when A->B
holds true where B is not a subset of A.

In a relationship, if attribute B is not a subset of attribute A, then it is considered as a non-
trivial dependency.

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Example:

(Company} -> {CEO} (if we know the Company, we knows the CEO name)
But CEO is not a subset of Company, and hence it's non-trivial functional dependency.
For example :

An employee table with three attributes: emp_id, emp_name, emp_address.
The following functional dependencies are non-trivial:
emp_id -> emp_name (emp_name is not a subset of emp_id)
emp_id -> emp_address (emp_address is not a subset of emp_id)

On the other hand, the following dependencies are trivial:
{emp_id, emp_name} -> emp_name [emp_name is a subset of {emp_id, emp_name}]

Completely non trivial FD:
If a FD X->Y holds true where X intersection Y is null then this dependency is said to be
completely non trivial function dependency.

What is Transitive Dependency

When an indirect relationship causes functional dependency it is called Transitive Dependency.

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

29

If P -> Q and Q -> R is true, then P-> R is a transitive dependency.

To achieve 3NF, eliminate the Transitive Dependency.

Example

<MovieListing>

Movie_ID Listing_ID Listing_Type DVD_Price ($)

M08 L09 Crime 180

M03 L05 Drama 250

M05 L09 Crime 180

The above table is not in 3NF because it has a transitive functional dependency −

Movie_ID -> Listing_ID

Listing_ID -> Listing_Type

Therefore, the following has transitive functional dependency.

Movie_ID -> Listing_Type

The above states the relation <MovieListing> violates the 3rd Normal Form (3NF).

To remove the violation, you need to split the tables and remove the transitive functional dependency.

<Movie>

Movie_ID Listing_ID DVD_Price ($)

M08 L09 180

M03 L05 250

M05 L09 180

<Listing>

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

30

Listing_ID
Listing_Type

L09 Crime

L05 Drama

L09 Crime

Now the above relation is in Third Normal Form (3NF) of Normalization.

What is Partial Dependency?

Partial Dependency occurs when a non-prime attribute is functionally dependent on part of a

candidate key.

The 2nd Normal Form (2NF) eliminates the Partial Dependency.

Let us see an example −

Example

<StudentProject>

StudentID ProjectNo StudentName ProjectName

S01 199 aaa Geo Location

S02 120 bbb Cluster Exploration

In the above table, we have partial dependency; let us see how −

The prime key attributes are StudentID and ProjectNo, and

StudentID = Unique ID of the student

StudentName = Name of the student

ProjectNo = Unique ID of the project

ProjectName = Name of the project

As stated, the non-prime attributes i.e. StudentName and ProjectName should be functionally
dependent on part of a candidate key, to be Partial Dependent.

The StudentName can be determined by StudentID, which makes the relation Partial Dependent.

The ProjectName can be determined by ProjectNo, which makes the relation Partial Dependent.

To remove Partial Dependency and violation on 2NF, decompose the tables −

<StudentInfo>

M.K. Institute of Computer Studies, Bharuch
F.Y.B.C.A. (SEM – 1)

105: Data Manipulation and Analysis (DMA)
UNIT-4

31

StudentID ProjectNo StudentName

S01 199 Katie

S02 120 Ollie

<ProjectInfo>

ProjectNo ProjectName

199 Geo Location

120 Cluster Exploration

